Here below a little program in Oxygene that implements 2 classes (in fact, they are 3). There is the main class, called Fiborial (Fibo(nnacci)+(Facto)rial) that implements the Fibonacci and the Factorial algorithms in two ways, one Recursive (using recursion) and the other Imperative (using loops and states). The second class is just an instance class that does the same thing, but its there just to show the difference between static and instance classes, and finally the third one (which will not appear in other languages) is the Program class which has the static execution method "Main".
You can also find 3 more little examples at the bottom. One prints out the Factorial's Series and Fibonacci's Series, the second one just shows a class that mixes both: static and instance members, and finally the third one that uses different return types (including System.Numerics.BigInteger) for the Factorial method to compare the timing and result.
As with the previous posts, you can copy and paste the code below in your favorite IDE/Editor and start playing and learning with it. This little "working" program will teach you some more basics of the Programming Language.
There are some "comments" on the code added just to tell you what are or how are some features called. In case you want to review the theory, you can read my previous post, where I give a definition of each of the concepts mentioned on the code. You can find it here: http://carlosqt.blogspot.com/2011/01/new-series-factorial-and-fibonacci.html
The Fiborial Program
// Factorial and Fibonacci in Delphi Prism namespace FiborialDelphi; interface uses System, System.Diagnostics, System.Collections.Generic, System.Numerics; type // Static Class StaticFiborial = public static class private // Static/Class Field class var fClassName: string; public // Static/Class Constructor class constructor; // Static/Class Method - Factorial Recursive class method FactorialR(n: integer): BigInteger; // Static/Class Method - Factorial Imperative class method FactorialI(n: integer): BigInteger; // Static/Class Method - Fibonacci Recursive class method FibonacciR(n: integer): Int64; // Static/Class Method - Fibonacci Imperative class method FibonacciI(n: integer): Int64; // Static/Class Method - Benchmarking Algorithms class method BenchmarkAlgorithm(algorithm: integer; values: List<integer>); end; type // Instance Class InstanceFiborial = public class private // Instance Field var fClassName: string; public // Instance Constructor constructor; // Instance Method - Factorial Recursive method FactorialR(n: integer): BigInteger; // Instance Method - Factorial Imperative method FactorialI(n: integer): BigInteger; // Instance Method - Fibonacci Recursive method FibonacciR(n: integer): Int64; // Instance Method - Fibonacci Imperative method FibonacciI(n: integer): Int64; end; type ConsoleApp = class public class method Main(args: array of string); end; implementation // Static/Class Constructor class constructor StaticFiborial; begin fClassName := 'Static/Class Constructor'; Console.WriteLine(fClassName); end; // Static/Class Method - Factorial Recursive class method StaticFiborial.FactorialR(n: integer): BigInteger; begin if n = 1 then result := 1 else result := n * FactorialR(n - 1); end; // Static/Class Method - Factorial Imperative class method StaticFiborial.FactorialI(n: integer): BigInteger; var res: BigInteger := 1; begin for i:integer := n downto 1 step 1 do res := res * i; result := res; end; // Static/Class Method - Fibonacci Recursive class method StaticFiborial.FibonacciR(n: integer): Int64; begin if n < 2 then result := 1 else result := FibonacciR(n - 1) + FibonacciR(n - 2); end; // Static/Class Method - Fibonacci Imperative class method StaticFiborial.FibonacciI(n: integer): Int64; var tmp, pre, cur: Int64; begin tmp := 0; pre := 1; cur := 1; for i: integer := 2 to n step 1 do begin tmp := cur + pre; pre := cur; cur := tmp; end; result := cur; end; // Static Method - Benchmarking Algorithms class method StaticFiborial.BenchmarkAlgorithm(algorithm: integer; values: List<integer>); var timer: StopWatch; i, testValue: integer; facTimeResult: BigInteger := 0; fibTimeResult: Int64 := 0; begin i := 0; testValue := 0; timer := new StopWatch(); // 'switch/case' Flow Constrol Statement case algorithm of 1: begin Console.WriteLine(''#10'Factorial Imperative:'); // 'For' Loop Statement for i := 0 to values.Count - 1 step 1 do begin testValue := values[i]; // Taking Time timer.Start(); facTimeResult := FactorialI(testValue); timer.Stop(); // Getting Time Console.WriteLine(' ({0}) = {1}', testValue, timer.Elapsed); end; end; 2: begin Console.WriteLine(''#10'Factorial Recursive:'); // 'While' Loop Statement while i < values.Count do begin testValue := values[i]; // Taking Time timer.Start(); facTimeResult := FactorialR(testValue); timer.Stop(); // Getting Time Console.WriteLine(' ({0}) = {1}', testValue, timer.Elapsed); inc(i); end; end; 3: begin Console.WriteLine(''#10'Fibonacci Imperative:'); // 'Repeat/Do' Loop Statement repeat testValue := values[i]; // Taking Time timer.Start(); facTimeResult := FibonacciI(testValue); timer.Stop(); // Getting Time Console.WriteLine(' ({0}) = {1}', testValue, timer.Elapsed); inc(i); until i = values.Count - 1 end; 4: begin Console.WriteLine(''#10'Fibonacci Recursive:'); // 'For Each' Loop Statement for each item in values do begin testValue := item; // Taking Time timer.Start(); facTimeResult := FibonacciR(testValue); timer.Stop(); // Getting Time Console.WriteLine(' ({0}) = {1}', testValue, timer.Elapsed); end; end; else Console.WriteLine('DONG!'); end; end; // Instance Constructor constructor InstanceFiborial; begin self.fClassName := 'Instance Constructor'; Console.WriteLine(self.fClassName); end; // Instance Method - Factorial Recursive method InstanceFiborial.FactorialR(n: integer): BigInteger; begin // Calling Static Method result := StaticFiborial.FactorialR(n); end; // Instance Method - Factorial Imperative method InstanceFiborial.FactorialI(n: integer): BigInteger; begin // Calling Static Method result := StaticFiborial.FactorialI(n); end; // Instance Method - Fibonacci Recursive method InstanceFiborial.FibonacciR(n: integer): Int64; begin // Calling Static Method result := StaticFiborial.FibonacciR(n); end; // Instance Method - Fibonacci Imperative method InstanceFiborial.FibonacciI(n: integer): Int64; begin // Calling Static Method result := StaticFiborial.FibonacciI(n); end; class method ConsoleApp.Main(args: array of string); var values: List<integer>; ff: InstanceFiborial; begin Console.WriteLine(''#10'Static Class'); // Calling Static Class and Methods // No instantiation needed. Calling method directly from the class Console.WriteLine('FacImp(5) = {0}', StaticFiborial.FactorialI(5)); Console.WriteLine('FacRec(5) = {0}', StaticFiborial.FactorialR(5)); Console.WriteLine('FibImp(11)= {0}', StaticFiborial.FibonacciI(11)); Console.WriteLine('FibRec(11)= {0}', StaticFiborial.FibonacciR(11)); Console.WriteLine(''#10'Instance Class'); // Calling Instance Class and Methods // Need to instantiate before using. Calling method from instantiated object ff := new InstanceFiborial(); Console.WriteLine('FacImp(5) = {0}', ff.FactorialI(5)); Console.WriteLine('FacRec(5) = {0}', ff.FactorialR(5)); Console.WriteLine('FibImp(11)= {0}', ff.FibonacciI(11)); Console.WriteLine('FibRec(11)= {0}', ff.FibonacciR(11)); // Create a (generic) list of integer values to test // From 5 to 50 by 5 values := new List<integer>(); for i:integer := 5 to 50 step 5 do values.Add(i); // Benchmarking Fibonacci // 1 = Factorial Imperative StaticFiborial.BenchmarkAlgorithm(1, values); // 2 = Factorial Recursive StaticFiborial.BenchmarkAlgorithm(2, values); // Benchmarking Factorial // 3 = Fibonacci Imperative StaticFiborial.BenchmarkAlgorithm(3, values); // 4 = Fibonacci Recursive StaticFiborial.BenchmarkAlgorithm(4, values); // Stop and Exit Console.Read(); end; end.
And the Output is:
Humm, looks like Fibonnaci's algorithm implemented using recursion is definitively more complex than the others 3 right? I will grab these results for this and each of the upcoming posts to prepare a comparison of time execution between all the programming languages, then we will be able to talk about the algorithm's complexity as well.
Printing the Factorial and Fibonacci Series
namespace FiborialSeries; interface uses System, System.Text, System.Numerics; type Fiborial = static class public class method GetFactorialSeries(n: integer): string; class method GetFibonnaciSeries(n: integer): string; class method Factorial(n: integer): BigInteger; class method Fibonacci(n: integer): Int64; end; type ConsoleApp = class public class method Main(args: array of string); end; implementation class method Fiborial.GetFactorialSeries(n: integer): string; var // Using a StringBuilder as a list of string elements series: StringBuilder; begin // Create the String that will hold the list series := new StringBuilder(); // We begin by concatenating the number you want to calculate // in the following format: "!# =" series.Append('!'); series.Append(n); series.Append(' = '); // We iterate backwards through the elements of the series for i: integer := n downto 1 do begin // and append it to the list series.Append(i); if i > 1 then series.Append(' * ') else series.Append(' = '); end; // Get the result from the Factorial Method // and append it to the end of the list series.Append(Factorial(n)); // return the list as a string result := series.ToString(); end; class method Fiborial.GetFibonnaciSeries(n: integer): string; var // Using a StringBuilder as a list of string elements series: StringBuilder; begin // Create the String that will hold the list series := new StringBuilder(); // We begin by concatenating the first 3 values which // are always constant series.Append('0, 1, 1'); // Then we calculate the Fibonacci of each element // and add append it to the list for i: integer := 2 to n do begin if i < n then series.Append(', ') else series.Append(' = '); series.Append(Fibonacci(i)); end; // return the list as a string result := series.ToString(); end; class method Fiborial.Factorial(n: integer): BigInteger; begin if n = 1 then result := 1 else result := n * Factorial(n - 1); end; class method Fiborial.Fibonacci(n: integer): Int64; begin if n < 2 then result := 1 else result := Fibonacci(n - 1) + Fibonacci(n - 2); end; class method ConsoleApp.Main(args: array of string); begin // Printing Factorial Series Console.WriteLine(); Console.WriteLine(Fiborial.GetFactorialSeries(5)); Console.WriteLine(Fiborial.GetFactorialSeries(7)); Console.WriteLine(Fiborial.GetFactorialSeries(9)); Console.WriteLine(Fiborial.GetFactorialSeries(11)); Console.WriteLine(Fiborial.GetFactorialSeries(40)); // Printing Fibonacci Series Console.WriteLine(); Console.WriteLine(Fiborial.GetFibonnaciSeries(5)); Console.WriteLine(Fiborial.GetFibonnaciSeries(7)); Console.WriteLine(Fiborial.GetFibonnaciSeries(9)); Console.WriteLine(Fiborial.GetFibonnaciSeries(11)); Console.WriteLine(Fiborial.GetFibonnaciSeries(40)); Console.Read(); end; end.
And the Output is:
Mixing Instance and Static Members in the same Class
We can also define instance classes that have both, instance and static members such as: fields, properties, constructors, methods, etc. However, we cannot do that if the class is marked as static because of the features mentioned in the previous post:
The main features of a static class are:
- They only contain static members.
- They cannot be instantiated.
- They are sealed.
- They cannot contain Instance Constructors
namespace FiborialExtrasDelphi2; // Instance Classes can have both: static and instance members. // However, Static Classes only allow static members to be defined. // If you declare our next example class as static // (static class Fiborial) you will get the following compile error // Error: cannot declare instance members in a static class interface // Instance Class type Fiborial = class private // Instance Field var fInstanceCount: integer; // Static Field class var fStaticCount: integer; public // Instance Read-Only Property // Within instance members, you can always use // the "this" reference pointer to access your (instance) members. property InstanceCount : integer read self.fInstanceCount; // Static Read-Only Property // Remeber that Properties are Methods to the CLR, so, you can also // define static properties for static fields. // As with Static Methods, you cannot reference your class members // with the "this" reference pointer since static members are not // instantiated. class property StaticCount : integer read fStaticCount; // Instance Constructor constructor; // Static Constructor class constructor; // Instance Method method Factorial(n: integer); // Static Method class method Fibonacci(n: integer); end; type ConsoleApp = class public class method Main(args: array of string); end; implementation // Instance Constructor constructor Fiborial; begin self.fInstanceCount := 0; Console.WriteLine(''#10'Instance Constructor {0}', self.fInstanceCount); end; // Static/Class Constructor class constructor Fiborial; begin fStaticCount := 0; Console.WriteLine(''#10'Static Constructor {0}', fStaticCount); end; // Instance Method method Fiborial.Factorial(n: integer); begin inc(self.fInstanceCount); Console.WriteLine(''#10'Factorial({0})', n); end; // Static Method class method Fiborial.Fibonacci(n: integer); begin inc(fStaticCount); Console.WriteLine(''#10'Fibonacci({0})', n); end; class method ConsoleApp.Main(args: array of string); begin // Calling Static Constructor and Methods // No need to instantiate Fiborial.Fibonacci(5); // Calling Instance Constructor and Methods // Instance required var fib := new Fiborial(); fib.Factorial(5); Fiborial.Fibonacci(15); fib.Factorial(5); // Calling Instance Constructor and Methods // for a second object var fib2 := new Fiborial(); fib2.Factorial(5); Console.WriteLine(); // Calling Static Property Console.WriteLine('Static Count = {0}', Fiborial.StaticCount); // Calling Instance Property of object 1 and 2 Console.WriteLine('Instance 1 Count = {0}', fib.InstanceCount); Console.WriteLine('Instance 2 Count = {0}', fib2.InstanceCount); Console.Read(); end; end.
And the Output is:
Factorial using System.Int64, System.Double, System.Numerics.BigInteger
The Factorial of numbers over 20 are massive!
For instance: !40 = 815915283247897734345611269596115894272000000000!
Because of this, the previous version of this program was giving the "wrong" result
!40 = -70609262346240000 when using "long" (System.Int64) type, but it was on my previous post in VB.NET that I realized about this faulty code, because instead of giving me a wrong value, VB.NET execution thrown an Overflow Exception when using the "Long" (System.Int64) type.
My first idea was to use ulong and ULong, but both failed for "big" numbers. I then used Double (double floating point) type and got no more exception/wrong result. The result of the factorial was now correct !40 = 1.1962222086548E+56, but still I wanted to show the Integer value of it, so I did some research and found that there is a new System::Numerics::BigInteger class in the .NET Framework 4.0. Adding the reference to the project and using this new class as the return type of the Factorial methods, I was able to get the result I was expecting.
!40 = 815915283247897734345611269596115894272000000000
What I also found was that using different types change the time the algorithm takes to finish:
System.Int64 < System.Double < System.Numerics.BigInteger
Almost by double!
To illustrate what I just "tried" to say, lets have a look at the following code and the output we get.
namespace FiborialExtrasDelphi3; interface uses System, System.Numerics, System.Diagnostics; type ConsoleApp = class public class method Main(args: array of string); class method FactorialInt64(n: integer): Int64; class method FactorialDouble(n: integer): Double; class method FactorialBigInteger(n: integer): BigInteger; end; implementation class method ConsoleApp.Main(args: array of string); var timer: StopWatch; facIntResult: System.Int64 := 0; facDblResult: System.Double := 0; facBigResult: System.Numerics.BigInteger := 0; begin timer := new StopWatch(); Console.WriteLine(''#10'Factorial using Int64'); for i: integer := 5 to 50 step 5 do begin timer.Start(); facIntResult := FactorialInt64(i); timer.Stop(); Console.WriteLine(' ({0}) = {1} : {2}', i, timer.Elapsed, facIntResult); end; Console.WriteLine(''#10'Factorial using Double'); for i: integer := 5 to 50 step 5 do begin timer.Start(); facDblResult := FactorialDouble(i); timer.Stop(); Console.WriteLine(' ({0}) = {1} : {2}', i, timer.Elapsed, facDblResult); end; Console.WriteLine(''#10'Factorial using BigInteger'); for i: integer := 5 to 50 step 5 do begin timer.Start(); facBigResult := FactorialBigInteger(i); timer.Stop(); Console.WriteLine(' ({0}) = {1} : {2}', i, timer.Elapsed, facBigResult); end; Console.Read(); end; class method ConsoleApp.FactorialInt64(n: integer): Int64; begin if n = 1 then result := 1 else result := n * FactorialInt64(n - 1); end; class method ConsoleApp.FactorialDouble(n: integer): Double; begin if n = 1 then result := 1 else result := n * FactorialDouble(n - 1); end; class method ConsoleApp.FactorialBigInteger(n: integer): BigInteger; begin if n = 1 then result := 1 else result := n * FactorialBigInteger(n - 1); end; end.
NOTE: you need to manually add a reference to the System.Numerics.dll assembly to your project so you can add it to your code.
And the Output is: