Here below a little program in Nemerle that implements 2 classes (in fact, they are 3). There is the main class, called Fiborial (Fibo(nnacci)+(Facto)rial) that implements the Fibonacci and the Factorial algorithms in two ways, one Recursive (using recursion) and the other Imperative (using loops and states). The second class is just an instance class that does the same thing, but its there just to show the difference between static and instance classes, and finally the third one (which will not appear in other languages) is the Program class which has the static execution method "Main".
You can also find 3 more little examples at the bottom. One prints out the Factorial's Series and Fibonacci's Series, the second one just shows a class that mixes both: static and instance members, and finally the third one that uses different return types (including System.Numerics.BigInteger) for the Factorial method to compare the timing and result.
As with the previous posts, you can copy and paste the code below in your favorite IDE/Editor and start playing and learning with it. This little "working" program will teach you some more basics of the Programming Language.
There are some "comments" on the code added just to tell you what are or how are some features called. In case you want to review the theory, you can read my previous post, where I give a definition of each of the concepts mentioned on the code. You can find it here: http://carlosqt.blogspot.com/2011/01/new-series-factorial-and-fibonacci.html
The Fiborial Program
// Factorial and Fibonacci in Nemerle using System; using System.Collections.Generic; using System.Diagnostics; using System.Numerics; using Nemerle.IO; namespace FiborialN { // Module = Static Class // all members become static by default // no need to explicitly use static on members (i did anyway) module StaticFiborial { // Static Field static mutable className : string; // Static Constructor static this() { className = "Static Constructor"; printf("%s", className); } // Static Method - Factorial Recursive public static FactorialR(n : int) : BigInteger { if (n == 1) BigInteger(1); else BigInteger(n) * FactorialR(n - 1); } // Static Method - Factorial Imperative public static FactorialI(n : int) : BigInteger { mutable res : BigInteger = BigInteger(1); for (mutable i : int = n; i >= 1; i--) res *= i; res; } // Static Method - Fibonacci Recursive public static FibonacciR(n : int) : long { def oneLong : long = 1; if (n < 2) oneLong; else FibonacciR(n - 1) + FibonacciR(n - 2); } // Static Method - Fibonacci Imperative public static FibonacciI(n : int) : long { mutable pre : long = 1; mutable cur : long = 1; mutable tmp : long = 0; for (mutable i : int = 2; i <= n; i++) { tmp = cur + pre; pre = cur; cur = tmp; } cur; } // Static Method - Benchmarking Algorithms public static BenchmarkAlgorithm(algorithm : int, values : list[int]) : void { def timer : Stopwatch = Stopwatch(); mutable i : int = 0; mutable testValue : int = 0; mutable facTimeResult : BigInteger = BigInteger(0); mutable fibTimeResult : long = 0; // "Switch" Flow Constrol Statement match (algorithm) { | 1 => printf("\nFactorial Imperative:\n"); // "For" Loop Statement for (i = 0; i < values.Length; i++) { testValue = values.Nth(i); // Taking Time timer.Start(); facTimeResult = FactorialI(testValue); timer.Stop(); // Getting Time printf(" (%d) = %s\n", testValue, timer.Elapsed.ToString()); } | 2 => printf("\nFactorial Recursive:\n"); // 'While' Loop Statement while (i < values.Length) { testValue = values.Nth(i); // Taking Time timer.Start(); facTimeResult = FactorialR(testValue); timer.Stop(); // Getting Time printf(" (%d) = %s\n", testValue, timer.Elapsed.ToString()); i++; } | 3 => printf("\nFibonacci Imperative:\n"); // 'Do-While' Loop Statement do { testValue = values.Nth(i); // Taking Time timer.Start(); fibTimeResult = FibonacciI(testValue); timer.Stop(); // Getting Time printf(" (%d) = %s\n", testValue, timer.Elapsed.ToString()); i++; } while (i < values.Length); | 4 => printf("\nFibonacci Recursive:\n"); // 'For Each' Loop Statement foreach (item : int in values) { testValue = item; // Taking Time timer.Start(); fibTimeResult = FibonacciR(testValue); timer.Stop(); // Getting Time printf(" (%d) = %s\n", testValue, timer.Elapsed.ToString()); } | _ => printf("DONG!"); } } } // Instance Class public class InstanceFiborial { // Instance Field mutable className : String; // Instance Constructor public this() { this.className = "Instance Constructor"; printf("%s", this.className); } // Instance Method - Factorial Recursive public FactorialR(n : int) : BigInteger { // Calling Static Method StaticFiborial.FactorialR(n); } // Instance Method - Factorial Imperative public FactorialI(n : int) : BigInteger { // Calling Static Method StaticFiborial.FactorialI(n); } // Instance Method - Fibonacci Recursive public FibonacciR(n : int) : long { // Calling Static Method StaticFiborial.FibonacciR(n); } // Instance Method - Factorial Imperative public FibonacciI(n : int) : long { // Calling Static Method StaticFiborial.FibonacciI(n); } } module Program { Main() : void { printf("\nStatic Class\n"); // Calling Static Class and Methods // No instantiation needed. Calling method directly from the class printf("FacImp(5) = %s\n", StaticFiborial.FactorialI(5).ToString()); printf("FacRec(5) = %s\n", StaticFiborial.FactorialR(5).ToString()); printf("FibImp(11)= %s\n", StaticFiborial.FibonacciI(11).ToString()); printf("FibRec(11)= %s\n", StaticFiborial.FibonacciR(11).ToString()); printf("\nInstance Class\n"); // Calling Instance Class and Methods // Need to instantiate before using. Calling method from instantiated object def ff : InstanceFiborial = InstanceFiborial(); printf("FacImp(5) = %s\n", ff.FactorialI(5).ToString()); printf("FacRec(5) = %s\n", ff.FactorialR(5).ToString()); printf("FibImp(11)= %s\n", ff.FibonacciI(11).ToString()); printf("FibRec(11)= %s\n", ff.FibonacciR(11).ToString()); // Create a (nemerle) list of integer values to test // From 5 to 50 by 5 mutable values : list[int] = []; foreach (i in $[5,10..50]) values ::= i; // Benchmarking Fibonacci // 1 = Factorial Imperative StaticFiborial.BenchmarkAlgorithm(1, values.Reverse()); // 2 = Factorial Recursive StaticFiborial.BenchmarkAlgorithm(2, values.Reverse()); // Benchmarking Factorial // 3 = Fibonacci Imperative StaticFiborial.BenchmarkAlgorithm(3, values.Reverse()); // 4 = Fibonacci Recursive StaticFiborial.BenchmarkAlgorithm(4, values.Reverse()); // Stop and Exit _ = Console.ReadLine(); } } }
And the Output is:
Humm, looks like Fibonnaci's algorithm implemented using recursion is definitively more complex than the others 3 right? I will grab these results for this and each of the upcoming posts to prepare a comparison of time execution between all the programming languages, then we will be able to talk about the algorithm's complexity as well.
Printing the Factorial and Fibonacci Series
using System; using System.Text; using System.Numerics; using Nemerle.IO; namespace FiborialSeries { static class Fiborial { // Using a StringBuilder as a list of string elements public static GetFactorialSeries(n : int) : string { // Create the String that will hold the list def series : StringBuilder = StringBuilder(); // We begin by concatenating the number you want to calculate // in the following format: "!# =" _ = series.Append("!"); _ = series.Append(n); _ = series.Append(" = "); // We iterate backwards through the elements of the series for (mutable i : int = n; i <= n && i > 0; i--) { // and append it to the list _ = series.Append(i); if (i > 1) _ = series.Append(" * "); else _ = series.Append(" = "); } // Get the result from the Factorial Method // and append it to the end of the list _ = series.Append(Factorial(n)); // return the list as a string series.ToString(); } // Using a StringBuilder as a list of string elements public static GetFibonnaciSeries(n : int) : string { // Create the String that will hold the list def series : StringBuilder = StringBuilder(); // We begin by concatenating the first 3 values which // are always constant _ = series.Append("0, 1, 1"); // Then we calculate the Fibonacci of each element // and add append it to the list for (mutable i : int = 2; i <= n; i++) { if (i < n) _ = series.Append(", "); else _ = series.Append(" = "); _ = series.Append(Fibonacci(i)); } // return the list as a string series.ToString(); } // Static Method - Factorial Recursive public static Factorial(n : int) : BigInteger { if (n == 1) BigInteger(1); else BigInteger(n) * Factorial(n - 1); } // Static Method - Fibonacci Recursive public static Fibonacci(n : int) : long { def oneLong : long = 1; if (n < 2) oneLong; else Fibonacci(n - 1) + Fibonacci(n - 2); } } module Program { Main() : void { printf("\nStatic Class\n"); // Printing Factorial Series printf("\n"); printf("%s\n", Fiborial.GetFactorialSeries(5)); printf("%s\n", Fiborial.GetFactorialSeries(7)); printf("%s\n", Fiborial.GetFactorialSeries(9)); printf("%s\n", Fiborial.GetFactorialSeries(11)); printf("%s\n", Fiborial.GetFactorialSeries(40)); // Printing Fibonacci Series printf("\n"); printf("%s\n", Fiborial.GetFibonnaciSeries(5)); printf("%s\n", Fiborial.GetFibonnaciSeries(7)); printf("%s\n", Fiborial.GetFibonnaciSeries(9)); printf("%s\n", Fiborial.GetFibonnaciSeries(11)); printf("%s\n", Fiborial.GetFibonnaciSeries(40)); } } }
And the Output is:
Mixing Instance and Static Members in the same Class
We can also define instance classes that have both, instance and static members such as: fields, properties, constructors, methods, etc. However, we cannot do that if the class is marked as static because of the features mentioned in the previous post:
The main features of a static class are:
- They only contain static members.
- They cannot be instantiated.
- They are sealed.
- They cannot contain Instance Constructors
using System; namespace FiborialExtrasN2 { // Instance Class class Fiborial { // Instance Field mutable instanceCount : int; // Static Field static mutable staticCount : int; // Instance Read-Only Property // Within instance members, you can always use // the "this" reference pointer to access your (instance) members. public InstanceCount : int { get { this.instanceCount; } } // Static Read-Only Property // Remeber that Properties are Methods to the CLR, so, you can also // define static properties for static fields. // As with Static Methods, you cannot reference your class members // with the "this" reference pointer since static members are not // instantiated. public static StaticCount : int { get { staticCount; } } // Instance Constructor public this() { this.instanceCount = 0; Console.WriteLine("\nInstance Constructor {0}", this.instanceCount); } // Static Constructor static this() { staticCount = 0; Console.WriteLine("\nStatic Constructor {0}", staticCount); } // Instance Method public Factorial(n : int) : void { this.instanceCount += 1; Console.WriteLine("\nFactorial({0})", n); } // Static Method public static Fibonacci(n : int) : void { staticCount += 1; Console.WriteLine("\nFibonacci({0})", n); } } module Program { Main() : void { // Calling Static Constructor and Methods // No need to instantiate Fiborial.Fibonacci(5); // Calling Instance Constructor and Methods // Instance required def fib : Fiborial = Fiborial(); fib.Factorial(5); Fiborial.Fibonacci(15); fib.Factorial(5); // Calling Instance Constructor and Methods // for a second object def fib2 : Fiborial = Fiborial(); fib2.Factorial(5); Console.WriteLine(); // Calling Static Property Console.WriteLine("Static Count = {0}", Fiborial.StaticCount); // Calling Instance Property of object 1 and 2 Console.WriteLine("Instance 1 Count = {0}", fib.InstanceCount); Console.WriteLine("Instance 2 Count = {0}", fib2.InstanceCount); } } }
And the Output is:
Factorial using System.Int64, System.Double, System.Numerics.BigInteger
The Factorial of numbers over 20 are massive!
For instance: !40 = 815915283247897734345611269596115894272000000000!
Because of this, the previous version of this program was giving the "wrong" result
!40 = -70609262346240000 when using "long" (System.Int64) type, but it was not until I did the Fiborial version in VB.NET that I realized about this faulty code, because instead of giving me a wrong value, VB.NET, JScript.NET, Boo execution thrown an Overflow Exception when using the "Long/long" (System.Int64) type.
My first idea was to use ulong and ULong, but both failed for "big" numbers. I then used Double (double floating point) type and got no more exception/wrong result. The result of the factorial was now correct !40 = 1.1962222086548E+56, but still I wanted to show the Integer value of it, so I did some research and found that there is a new System.Numerics.BigInteger class in the .NET Framework 4.0. Adding the reference to the project and using this new class as the return type of the Factorial methods, I was able to get the result I was expecting.
!40 = 815915283247897734345611269596115894272000000000
What I also found was that using different types change the time the algorithm takes to finish:
System.Int64 < System.Double < System.Numerics.BigInteger
Almost by double!
To illustrate what I just "tried" to say, lets have a look at the following code and the output we get.
#pragma indent using System; using System.Numerics; using System.Diagnostics; using System.Console; namespace FiborialExtrasCs3 module Program // Long Factorial public static FactorialInt64(n : int) : long def oneLong : long = 1; if (n == 1) oneLong; else n * FactorialInt64(n - 1); // Double Factorial public static FactorialDouble(n : int) : double def oneDouble : double = 1; if (n == 1) oneDouble; else n * FactorialDouble(n - 1); // BigInteger Factorial public static FactorialBigInteger(n : int) : BigInteger if (n == 1) BigInteger(1); else BigInteger(n) * FactorialBigInteger(n - 1); Main() : void def timer : Stopwatch = Stopwatch(); mutable facIntResult : long = 0; mutable facDblResult : double = 0; mutable facBigResult : BigInteger = BigInteger(0); WriteLine("\nFactorial using Int64"); // Benchmark Factorial using Int64 // Overflow Exception!!! try foreach (i in $[5,10..50]) timer.Start(); facIntResult = FactorialInt64(i); timer.Stop(); WriteLine(" ({0}) = {1} : {2}", i, timer.Elapsed, facIntResult); catch | ex is OverflowException => // yummy ^_^ WriteLine("Oops! {0}", ex.Message); WriteLine("\nFactorial using Double"); // Benchmark Factorial using Double foreach (i in $[5,10..50]) timer.Start(); facDblResult = FactorialDouble(i); timer.Stop(); WriteLine(" ({0}) = {1} : {2}", i, timer.Elapsed, facDblResult); WriteLine("\nFactorial using BigInteger"); // Benchmark Factorial using BigInteger foreach (i in $[5,10..50]) timer.Start(); facBigResult = FactorialBigInteger(i); timer.Stop(); WriteLine(" ({0}) = {1} : {2}", i, timer.Elapsed, facBigResult);
NOTE: you need to manually add a reference to the System.Numerics.dll assembly to your project so you can add it to your code.
And the Output is: