Here below a little program in IronPython that implements 2 classes. There is the main class, called Fiborial (Fibo(nnacci)+(Facto)rial) that implements the Fibonacci and the Factorial algorithms in two ways, one Recursive (using recursion) and the other Imperative (using loops and states). The second class is just an instance class that does the same thing, but its there just to show the difference between static and instance classes, and finally a main function called as module level code.
You can also find 3 more little examples at the bottom. One prints out the Factorial's Series and Fibonacci's Series, the second one just shows a class that mixes both: static and instance members, and finally the third one that uses different return types for the Factorial method to compare the timing and result.
As with the previous posts, you can copy and paste the code below in your favorite IDE/Editor and start playing and learning with it. This little "working" program will teach you some more basics of the Programming Language.
There are some "comments" on the code added just to tell you what are or how are some features called. In case you want to review the theory, you can read my previous post, where I give a definition of each of the concepts mentioned on the code. You can find it here: http://carlosqt.blogspot.com/2011/01/new-series-factorial-and-fibonacci.html
WARNING: the code that you will see below is not following python(ic) guidelines/idiomatic coding, I did it in purpose to compare python's syntax and features side by side with other programming languages... For instance, instead of using a python int or long I imported and used System.Numerics.BigInteger instead. Other examples, naming convention and so on, so bear with me!
The Fiborial Program
# Factorial and Fibonacci in IronPython
import clr
clr.AddReference('System.Numerics.dll')
from System.Numerics import BigInteger
from System import Console
from System.Diagnostics import Stopwatch
# Instance Class
# static classes are not supported in Python
class StaticFiborial:
# Static Field
__className = ''
# no builtin static constructor/initializer support
# you can initialize field at this point and even add extra code
__className = 'Static Initializer'
print __className
# Static Method - Factorial Recursive
@staticmethod
def factorialR(n):
if n == 1:
return BigInteger.One
else:
return BigInteger.Multiply(BigInteger(n), StaticFiborial.factorialR(n-1))
# Static Method - Factorial Imperative
@staticmethod
def factorialI(n):
res = BigInteger.One
for i in range(n, 1, -1):
res = BigInteger.Multiply(res, BigInteger(i))
return res
# Static Method - Fibonacci Recursive
@staticmethod
def fibonacciR(n):
if n < 2:
return 1
else:
return StaticFiborial.fibonacciR(n - 1) + StaticFiborial.fibonacciR(n - 2)
# Static Method - Fibonacci Imperative
@staticmethod
def fibonacciI(n):
pre, cur, tmp = 0, 0, 0
pre, cur = 1, 1
for i in range(2, n + 1):
tmp = cur + pre
pre = cur
cur = tmp
return cur
# Static Method - Benchmarking Algorithms
@staticmethod
def benchmarkAlgorithm(algorithm, values):
timer = Stopwatch()
i = 0
testValue = 0
facTimeResult = BigInteger.Zero
fibTimeResult = 0
# 'if-elif-else' Flow Control Statement
if algorithm == 1:
print '\nFactorial Imperative:'
# 'For in range' Loop Statement
for i in range(values.Count):
testValue = values[i]
# Taking Time
timer.Start()
facTimeResult = StaticFiborial.factorialI(testValue)
timer.Stop()
# Getting Time
print ' (' + str(testValue) + ') = ', timer.Elapsed
elif algorithm == 2:
print '\nFactorial Recursive:'
# 'While' Loop Statement
while i < len(values):
testValue = values[i]
# Taking Time
timer.Start()
facTimeResult = StaticFiborial.factorialR(testValue)
timer.Stop()
# Getting Time
print ' (' + str(testValue) + ') = ', timer.Elapsed
i += 1
elif algorithm == 3:
print '\nFibonacci Imperative:'
# 'For in List' Loop Statement
for item in values:
testValue = item
# Taking Time
timer.Start()
fibTimeResult = StaticFiborial.fibonacciI(testValue)
timer.Stop()
# Getting Time
print ' (' + str(testValue) + ') = ', timer.Elapsed
elif algorithm == 4:
print '\nFibonacci Recursive:'
# 'For in List' Loop Statement
for item in values:
testValue = item
# Taking Time
timer.Start()
fibTimeResult = StaticFiborial.fibonacciR(testValue)
timer.Stop()
# Getting Time
print ' (' + str(testValue) + ') = ', timer.Elapsed
else:
print 'DONG!'
# Instance Class
class InstanceFiborial(object):
# Instances Field
__className = ''
# Instance Constructor
def __init__(self):
self.__className = 'Instance Constructor'
print self.__className
# Instance Method - Factorial Recursive
def factorialR(self, n):
# Calling Static Method
return StaticFiborial.factorialR(n)
# Instance Method - Factorial Imperative
def factorialI(self, n):
# Calling Static Method
return StaticFiborial.factorialI(n)
# Instance Method - Fibonacci Recursive
def fibonacciR(self, n):
# Calling Static Method
return StaticFiborial.fibonacciR(n)
# Instance Method - Fibonacci Imperative
def fibonacciI(self, n):
# Calling Static Method
return StaticFiborial.fibonacciI(n)
# Console Program
def main():
print 'Static Class'
# Calling Static Class and Methods
# No instantiation needed. Calling method directly from the class
print 'FacImp(5) = ', StaticFiborial.factorialI(5)
print 'FacRec(5) = ', StaticFiborial.factorialR(5)
print 'FibImp(11)= ', StaticFiborial.fibonacciI(11)
print 'FibRec(11)= ', StaticFiborial.fibonacciR(11)
print '\nInstance Class'
# Calling Instance Class and Methods
# Need to instantiate before using. Calling method from instantiated object
ff = InstanceFiborial()
print 'FacImp(5) = ', ff.factorialI(5)
print 'FacRec(5) = ', ff.factorialR(5)
print 'FibImp(11)= ', ff.fibonacciI(11)
print 'FibRec(11)= ', ff.fibonacciR(11)
# Create a (Python) list of values to test
# From 5 to 50 by 5
values = []
for i in range(5,55,5):
values.append(i)
# Benchmarking Fibonacci
# 1 = Factorial Imperative
StaticFiborial.benchmarkAlgorithm(1, values)
# 2 = Factorial Recursive
StaticFiborial.benchmarkAlgorithm(2, values)
# Benchmarking Factorial
# 3 = Fibonacci Imperative
StaticFiborial.benchmarkAlgorithm(3, values)
# 4 = Fibonacci Recursive
StaticFiborial.benchmarkAlgorithm(4, values)
# Stop and exit
Console.Read()
if __name__ == '__main__':
main()
And the Output is:
Humm, looks like Fibonnaci's algorithm implemented using recursion is definitively more complex than the others 3 right? I will grab these results for this and each of the upcoming posts to prepare a comparison of time execution between all the programming languages, then we will be able to talk about the algorithm's complexity as well.
Printing the Factorial and Fibonacci Series
import clr
clr.AddReference('System.Numerics.dll')
from System.Numerics import BigInteger
from System.Text import StringBuilder
from System import Console
class Fiborial:
# Using a StringBuilder as a list of string elements
@staticmethod
def getFactorialSeries(n):
# Create the String that will hold the list
series = StringBuilder()
# We begin by concatenating the number you want to calculate
# in the following format: "!# ="
series.Append("!")
series.Append(n)
series.Append(" = ")
# We iterate backwards through the elements of the series
for i in range(n, 0, -1):
# and append it to the list
series.Append(i)
if i > 1:
series.Append(" * ")
else:
series.Append(" = ")
# Get the result from the Factorial Method
# and append it to the end of the list
series.Append(Fiborial.factorial(n).ToString())
# return the list as a string
return series.ToString()
# Using a StringBuilder as a list of string elements
@staticmethod
def getFibonnaciSeries(n):
# Create the String that will hold the list
series = StringBuilder()
# We begin by concatenating the first 3 values which
# are always constant
series.Append("0, 1, 1")
# Then we calculate the Fibonacci of each element
# and add append it to the list
for i in range(2, n+1):
if i < n:
series.Append(", ")
else:
series.Append(" = ")
series.Append(Fiborial.fibonacci(i))
# return the list as a string
return series.ToString()
@staticmethod
def factorial(n):
if n == 1:
return BigInteger.One
else:
return BigInteger.Multiply(BigInteger(n), Fiborial.factorial(n-1))
@staticmethod
def fibonacci(n):
if n < 2:
return 1
else:
return Fiborial.fibonacci(n - 1) + Fiborial.fibonacci(n - 2)
def main():
# Printing Factorial Series
print ""
print Fiborial.getFactorialSeries(5)
print Fiborial.getFactorialSeries(7)
print Fiborial.getFactorialSeries(9)
print Fiborial.getFactorialSeries(11)
print Fiborial.getFactorialSeries(40)
# Printing Fibonacci Series
print ""
print Fiborial.getFibonnaciSeries(5)
print Fiborial.getFibonnaciSeries(7)
print Fiborial.getFibonnaciSeries(9)
print Fiborial.getFibonnaciSeries(11)
print Fiborial.getFibonnaciSeries(40)
Console.Read()
if __name__ == '__main__':
main()
And the Output is:
Mixing Instance and Static Members in the same Class
Instance classes can contain both, instance and static members such as: fields, properties, constructors, methods, etc.
from System import Console
# Instance Class
class Fiborial:
# Instance Field
__instanceCount = 0
# Static Field
__staticCount = 0
print "\nStatic Constructor", __staticCount
# Instance Read-Only Property
# Within instance members, you can always use
# the "self" reference pointer to access your (instance) members.
def getInstanceCount(self):
return self.__instanceCount
InstanceCount = property(getInstanceCount, None, None)
# Static Property
# looks like it is not supported even if the code identify it as such
@staticmethod
def getStaticCount():
return Fiborial.__staticCount
#StaticCount = property(getStaticCount, None, None)
# The problem seems to be the use of: property(getStaticCount,..)
# it requires an instance method and not a static one (Test.getStaticCount)
# Instance Constructor
def __init__(self):
self.__instanceCount = 0
print "\nInstance Constructor", self.__instanceCount
# No Static Constructor
#@staticmethod
#def __init__():
# Fiborial.__staticCount = 0
# print "\nStatic Constructor", Fiborial.__staticCount
# Instance Method
def factorial(self, n):
self.__instanceCount += 1
print "\nFactorial(" + str(n) + ")"
# Static Method
@staticmethod
def fibonacci(n):
Fiborial.__staticCount += 1
print "\nFibonacci(" + str(n) + ")"
def main():
# Calling Static Constructor and Methods
# No need to instantiate
Fiborial.fibonacci(5)
# Calling Instance Constructor and Methods
# Instance required
fib = Fiborial()
fib.factorial(5)
Fiborial.fibonacci(15)
fib.factorial(5)
# Calling Instance Constructor and Methods
# for a second object
fib2 = Fiborial()
fib2.factorial(5)
print ""
# Calling Static Property
# using the static method referenced by the property
#print "Static Count =", Fiborial.StaticCount
print "Static Count =", Fiborial.getStaticCount()
# Calling Instance Property of object 1 and 2
print "Instance 1 Count =", fib.InstanceCount
print "Instance 2 Count =", fib2.InstanceCount
Console.Read()
if __name__ == '__main__':
main()
And the Output is:
Factorial using int, float, System.Numerics.BigInteger
So, it looks like integers in python can hold big integers, so using (Iron)Python int/long or System.Numerics.BigInteger is the same so not much to say here.
NOTE: as with the previous scripts you need to manually add a reference to the System.Numerics.dll assembly to your project or SearchPath + clr.AddReference so you can add it to your code.
import clr
clr.AddReference('System.Numerics.dll')
from System.Numerics import BigInteger
from System import Console
from System.Diagnostics import Stopwatch
# Int/Long Factorial
def factorial_int(n):
if n == 1:
return int(1)
else:
return int(n * factorial_int(n - 1))
# double/float Factorial
def factorial_float(n):
if n == 1:
return float(1.0)
else:
return float(n * factorial_float(n - 1))
# BigInteger Factorial
def factorial_bigint(n):
if n == 1:
return BigInteger.One
else:
return BigInteger.Multiply(BigInteger(n), factorial_bigint(n-1))
timer = Stopwatch()
facIntResult = 0
facDblResult = 0.0
facBigResult = BigInteger.Zero
i = 0
print "\nFactorial using Int/Long"
# Benchmark Factorial using Int64
for i in range(5,55,5):
timer.Start()
facIntResult = factorial_int(i)
timer.Stop()
print " (" + str(i) + ") =", timer.Elapsed, " :", facIntResult
print "\nFactorial using Float/Double"
# Benchmark Factorial using Double
for i in range(5,55,5):
timer.Start()
facDblResult = factorial_float(i)
timer.Stop()
print " (" + str(i) + ") =", timer.Elapsed, " :", facDblResult
print "\nFactorial using BigInteger"
# Benchmark Factorial using BigInteger
for i in range(5,55,5):
timer.Start()
facBigResult = factorial_bigint(i)
timer.Stop()
print " (" + str(i) + ") =", timer.Elapsed, " :", facBigResult
Console.Read()
And the Output is:




No comments:
Post a Comment