Here below a little program in Xtend that implements 2 classes (in fact, they are 3 + an extra utility Stopwatch class from my previous post http://carlosqt.blogspot.com/2011/05/stopwatch-class-for-java.html). There is the main class, called Fiborial (Fibo(nnacci)+(Facto)rial) that implements the Fibonacci and the Factorial algorithms in two ways, one Recursive (using recursion) and the other Imperative (using loops and states). The second class is just an instance class that does the same thing, but its there just to show the difference between static and instance classes, and finally the third one (which will not appear in other languages) is the Program class which has the static execution method "main".
You can also find 3 more little examples at the bottom. One prints out the Factorial's Series and Fibonacci's Series, the second one just shows a class that mixes both: static and instance members, and finally the third one that uses different return types (including java.math.BigInteger) for the Factorial method to compare the timing and result.
As with the previous posts, you can copy and paste the code below in your Eclipse IDE and start playing and learning with it. This little "working" program will teach you some more basics of the Programming Language.
There are some "comments" on the code added just to tell you what are or how are some features called. In case you want to review the theory, you can read my previous post, where I give a definition of each of the concepts mentioned on the code. You can find it here: http://carlosqt.blogspot.com/2011/01/new-series-factorial-and-fibonacci.html
The Fiborial Program
// Factorial and Fibonacci in Xtend package com.series import com.series.Stopwatch import java.math.BigInteger import java.util.List // Instance Class // static is not a class modifier in Xtend class StaticFiborial { // Static Field private static String className = "'Static' Constructor" // Static Constructor/Initializer // no available static constructor support // Static Initializer Method instead, but need to be explicitly invoked def static constructor() { className = "'Static' Constructor" println(className) } // Static Method - Factorial Recursive def static BigInteger factorialR(int n) { if (n == 1) return 1BI else return BigInteger::valueOf(n) * factorialR(n - 1) } // Static Method - Factorial Imperative def static BigInteger factorialI(int n) { var res = 1BI var m = n // method parameters are final while (m > 1) { res = res * BigInteger::valueOf(m) m = m - 1 } return res } // Static Method - Fibonacci Recursive def static long fibonacciR(int n) { if (n < 2) return 1L else return fibonacciR(n - 1) + fibonacciR(n - 2) } // Static Method - Fibonacci Imperative def static long fibonacciI(int n) { var pre = 1L var cur = 1L var tmp = 0L for (int i : 2..n) { tmp = cur + pre pre = cur cur = tmp } return cur } // Static Method - Benchmarking Algorithms def static void benchmarkAlgorithm(int algorithm, List<Integer> values) { val timer = new Stopwatch var testValue = 0 var facTimeResult = 0BI var fibTimeResult = 0L var i = 0 // "Switch" Flow Control Statement switch algorithm { case 1: { println("\nFactorial Imperative:") // "For" Loop Statement for (int j : 0..values.size - 1) { testValue = values.get(j).intValue // Taking Time timer.start facTimeResult = factorialI(testValue) timer.stop // Getting Time println(''' («testValue») = «timer.getElapsed»''') } } case 2: { println("\nFactorial Recursive:") // "While" Loop Statement while (i < values.size) { testValue = values.get(i).intValue // Taking Time timer.start facTimeResult = factorialR(testValue) timer.stop // Getting Time println(''' («testValue») = «timer.getElapsed»''') i = i + 1 } } case 3: { println("\nFibonacci Imperative:") // "Do-While" Loop Statement do { testValue = values.get(i).intValue // Taking Time timer.start fibTimeResult = fibonacciI(testValue) timer.stop // Getting Time println(''' («testValue») = «timer.getElapsed»''') i = i + 1 } while (i < values.size) } case 4: { println("\nFibonacci Recursive:") // "For Each" Loop Statement for (int item : values) { testValue = item; // Taking Time timer.start fibTimeResult = fibonacciR(testValue) timer.stop // Getting Time println(''' («testValue») = «timer.getElapsed»''') } } default : println("DONG!") } } }
package com.series import com.series.StaticFiborial import java.math.BigInteger // Instance Class class InstanceFiborial { // Instance Field private String className // Instance Constructor new() { this.className = "Instance Constructor" println(this.className) } // Instance Method - Factorial Recursive def BigInteger factorialR(int n) { // Calling Static Method return StaticFiborial::factorialR(n) } // Instance Method - Factorial Imperative def BigInteger factorialI(int n) { // Calling Static Method return StaticFiborial::factorialI(n) } // Instance Method - Fibonacci Recursive def long fibonacciR(int n) { // Calling Static Method return StaticFiborial::fibonacciR(n) } // Instance Method - Factorial Imperative def long fibonacciI(int n) { // Calling Static Method return StaticFiborial::fibonacciI(n); } }
package com.series import com.series.StaticFiborial import com.series.InstanceFiborial import java.util.List import java.util.ArrayList import java.util.Scanner class FiborialProgram { def static main(String[] args) { println("\n'Static' Class") // Calling Static Class and Methods // No instantiation needed. Calling method directly from the class StaticFiborial::constructor println('''FacImp(5) = «StaticFiborial::factorialI(5)»''') println('''FacRec(5) = «StaticFiborial::factorialR(5)»''') println('''FibImp(11)= «StaticFiborial::fibonacciI(11)»''') println('''FibRec(11)= «StaticFiborial::fibonacciR(11)»''') println("\nInstance Class"); // Calling Instance Class and Methods // Need to instantiate before using. Calling method from instantiated object val ff = new InstanceFiborial println('''FacImp(5) = «ff.factorialI(5)»''') println('''FacRec(5) = «ff.factorialR(5)»''') println('''FibImp(11)= «ff.fibonacciI(11)»''') println('''FibRec(11)= «ff.fibonacciR(11)»''') // Create a (generic) list of integer values to test // From 5 to 50 by 5 val List<Integer> values = new ArrayList<Integer> var i = 5 while (i < 55) { values.add(i) i = i + 5 } // Benchmarking Fibonacci // 1 = Factorial Imperative StaticFiborial::benchmarkAlgorithm(1, values) // 2 = Factorial Recursive StaticFiborial::benchmarkAlgorithm(2, values) // Benchmarking Factorial // 3 = Fibonacci Imperative StaticFiborial::benchmarkAlgorithm(3, values) // 4 = Fibonacci Recursive StaticFiborial::benchmarkAlgorithm(4, values) // Stop and exit println("Press any key to exit...") val in = new Scanner(System::in) val line = in.nextLine in.close } }
And the Output is:
Printing the Factorial and Fibonacci Series
package com.series import java.math.BigInteger import java.lang.StringBuffer class Fiborial { // Using a StringBuffer as a list of string elements def static String getFactorialSeries(int n) { // Create the String that will hold the list val series = new StringBuffer // We begin by concatenating the number you want to calculate // in the following format: "!# =" series.append("!") series.append(n) series.append(" = ") // We iterate backwards through the elements of the series var i = n while (i > 0) { // and append it to the list series.append(i) if (i > 1) series.append(" * ") else series.append(" = ") i = i - 1 } // Get the result from the Factorial Method // and append it to the end of the list series.append(factorial(n)) // return the list as a string return series.toString } // Using a StringBuffer as a list of string elements def static String getFibonnaciSeries(int n) { // Create the String that will hold the list val series = new StringBuffer // We begin by concatenating the first 3 values which // are always constant series.append("0, 1, 1") // Then we calculate the Fibonacci of each element // and add append it to the list for (int i : 2..n) { if (i < n) series.append(", ") else series.append(" = ") series.append(fibonacci(i)) } // return the list as a string return series.toString } def static BigInteger factorial(int n) { if (n == 1) return 1BI else return BigInteger::valueOf(n) * factorial(n - 1) } def static long fibonacci(int n) { if (n < 2) return 1L else return fibonacci(n - 1) + fibonacci(n - 2) } }
package com.series import com.series.Fiborial class FiborialProgram { def static void main(String[] args) { // Printing Factorial Series println println(Fiborial::getFactorialSeries(5)) println(Fiborial::getFactorialSeries(7)) println(Fiborial::getFactorialSeries(9)) println(Fiborial::getFactorialSeries(11)) println(Fiborial::getFactorialSeries(40)) // Printing Fibonacci Series println println(Fiborial::getFibonnaciSeries(5)) println(Fiborial::getFibonnaciSeries(7)) println(Fiborial::getFibonnaciSeries(9)) println(Fiborial::getFibonnaciSeries(11)) println(Fiborial::getFibonnaciSeries(40)) } }
And the Output is:
Mixing Instance and Static Members in the same Class
Instance classes can contain both, instance and static members such as: fields, getters/setters, constructors/initializers, methods, etc.
package com.series class Fiborial { // Instance Field var int instanceCount // Static Field static var int staticCount // Instance Read-Only Getter // Within instance members, you can always use // the "this" reference pointer to access your (instance) members. def int getInstanceCount() { return this.instanceCount } // Static Read-Only Getter // As with Static Methods, you cannot reference your class members // with the "this" reference pointer since static members are not // instantiated. def static int getStaticCount() { return staticCount } // Instance Constructor public new() { this.instanceCount = 0 println println('''Instance Constructor «this.instanceCount»''') } // Static Constructor // not supported in Xtend. Constructor cannot be static. // using an explicit initializer method instead def static constructor() { staticCount = 0 println println('''Static Constructor «staticCount»''') } // Instance Method def void factorial(int n) { this.instanceCount = this.instanceCount + 1 println println('''Factorial(«n»)''') } // Static Method def static void fibonacci(int n) { staticCount = staticCount + 1 println println('''Fibonacci(«n»)'''); } }
package com.series import com.series.Fiborial class FiborialProgram { def static void main(String[] args) { // Calling Static Initializer and Methods // No need to instantiate Fiborial::constructor Fiborial::fibonacci(5) // Calling Instance Constructor and Methods // Instance required val fib = new Fiborial fib.factorial(5) Fiborial::fibonacci(15) fib.factorial(5) // Calling Instance Constructor and Methods // for a second object val fib2 = new Fiborial fib2.factorial(5) println // Calling Static Property println('''Static Count = «Fiborial::getStaticCount»''') // Calling Instance Property of object 1 and 2 println('''Instance 1 Count = «fib.getInstanceCount»''') println('''Instance 2 Count = «fib2.getInstanceCount»''') } }
And the Output is:
Factorial using java.lang.Long, java.lang.Double, java.math.BigInteger
package com.series import com.series.Stopwatch import java.math.BigInteger class Fiborial { def static void main(String[] args) { val timer = new Stopwatch var facIntResult = 0L var facDblResult = 0d var facBigResult = 0BI var i = 5 println("\nFactorial using Int64") // Benchmark Factorial using Int64 while (i < 55) { timer.start facIntResult = factorialInt64(i) timer.stop println(''' («i») = «timer.getElapsed» : «facIntResult»''') i = i + 5 } println("\nFactorial using Double") // Benchmark Factorial using Double i = 5 while (i < 55) { timer.start facDblResult = factorialDouble(i) timer.stop println(''' («i») = «timer.getElapsed» : «facDblResult»''') i = i + 5 } println("\nFactorial using BigInteger") // Benchmark Factorial using BigInteger i = 5 while (i < 55) { timer.start facBigResult = factorialBigInteger(i) timer.stop println(''' («i») = «timer.getElapsed» : «facBigResult»''') i = i + 5 } } // Long Factorial def static long factorialInt64(int n) { if (n == 1) return 1L else return n * factorialInt64(n - 1) } // Double Factorial def static double factorialDouble(int n) { if (n == 1) return 1d else return n * factorialDouble(n - 1) } // BigInteger Factorial def static BigInteger factorialBigInteger(int n) { if (n == 1) return 1BI else return BigInteger::valueOf(n) * factorialBigInteger(n - 1) } }
And the Output is:
No comments:
Post a Comment